Astrophysique 23 – Thermodynamique du big bang

Alain Bouquet

Laboratoire AstroParticule & Cosmologie Université Denis Diderot Paris 7, CNRS, Observatoire de Paris & CEA

THERMO DYNAMQUE

Las Cont to the

Particules, équilibre et température

Expansion et température

- Équilibre thermodynamique ⇒
- Expansion de l'univers

dimensions ∝ paramètre d'échelle a

densité n \propto T³

$$T \propto \frac{1}{a}$$

 \Rightarrow

- Expansion \Rightarrow refroitissement : T(z) = T(0) [1 + z]
- ⇒ le passé était plus chaud

t = 1 seconde
$$\Leftrightarrow$$
 T = 10¹⁰ K = 1 MeV

Histoire thermique de l'univers

Copyright @ Addison Wesley.

Un équilibre qui évolue

- Expansion \Rightarrow la température T diminue (à un « certain » rythme)
- ⇒ la densité des particules diminue

 $n(e^{-}) \propto T^{3} \checkmark n(e^{+}) \propto T^{3} \checkmark n(\gamma) \propto T^{3} \checkmark$

- à condition que les interactions entre particules « suivent » la diminution de la température
 - intensité de l'interaction suffisante
 - densité de particules suffisante
- si ce n'est plus le cas
 - → distributions « gelées »
- Elles conservent la forme qu'elles avaient à la température T_{gel} qui dépend
 - de l'interaction et de la densité
 - et de la vitesse de refroidissement

Cas particulier des photons

- Équilibre hors d'équilibre !
 - équilibre à température T₁
 - ⇒ corps noir (spectre de Planck)
 - expansion ⇒ décalage vers le rouge

 $\lambda_1 \rightarrow \lambda_2 = \lambda_1 (1+z_1)/(1+z_2)$

- \Rightarrow spectre décalé de $(1+z_1)/(1+z_2)$
- ⇒ identique à un spectre de Planck à la température

 $T_2 = T_1 (1+z_2)/(1+z_1)$

 ⇒ la distribution des photons reste une distribution d'équilibre même après que ces photons ne soient plus en équilibre thermique

Schématiquement

Particules massives et densités reliques

Asymétrie matière-antimatière

- Equilibre matière-antimatière inévitable à haute température (» 10¹³ K = m_{proton})
- Annihilation matière-antimatière par interaction forte ⇒ très intense
- ⇒ équilibre jusque très tard dans l'histoire de l'univers
- ⇒ densité relique calculée

$$n_{\rm B}/n_{\gamma} \sim 10^{-19}$$

- Observation : $n_B/n_\gamma \sim 10^{-10}$
 - ⇒ Nécessité d'une asymétrie initiale

Neutrinos

$$\sum_{\text{saveurs}} m_{v} = 94 \text{ eV} \quad \Omega_{v} h^{2}$$

Matière noire

$$\Rightarrow \Omega h^2 \approx \frac{10^{-26} \text{ cm}^{3/\text{s}}}{\sigma_{\text{annihil}} V} \Rightarrow \text{WIMP}$$

NUCLÉOSYNTHÈSE PRIMORDIALE

La nucléosynthèse primordiale

Herman, Gamow et Alpher

Situation de départ

 Univers très largement dominé par le rayonnement au sens large

 $\rho = (\pi^{2}/30) g_{eff} T^{4}$ $T(t) = (90/8\pi^{3} G_{N} g_{eff})^{1/4} / \sqrt{t}$ $T(t) \sim 1.55 \text{ MeV } g_{eff}^{-1/4} / \sqrt{t}$ $g_{eff} = 2 + 7/2 + 7 N_{v}/4$

- Equilibre thermique entre photons, neutrinos, électrons et nucléons
 - assuré par des interactions électromagnétiques _____
 - et par interactions faibles comme la conversion neutron-proton ____>
 - neutrons plus lourds de ~1 MeV que les protons → de moins en moins nombreux (faute d'énergie)

Annihilation électron-positron à T = 0,5 MeV

Réactions de fusion

Fusion du deutérium

• Vers l'hélium 4 via le tritium

- Le taux de réaction dépend
 - de la densité n_B de baryons (protons et neutrons)
 - de la densité n_γ de photons (capables de photo-dissocier le deutérium)
 - donc du rapport n_B / n_y

Vers l'hélium 4 via l'hélium 3

Prédiction majeure : l'abondance de l'hélium

- Situation initiale : un bain de photons, protons, neutrons, électrons, neutrinos
- Un rapport p/n ~ 6 entre protons et neutrons (12 protons pour 2 neutrons)
- Tous les neutrons finissent par se retrouver dans les noyaux d'hélium 4
 - 2 neutrons s'associent à 2 protons
 - sur 12 protons, il en reste 10 (→ noyau d'hydrogène) pour 1 noyau d'hélium 4
 - \rightarrow abondances relatives
 - en nombre 10 : 1 \rightarrow 10% d'hélium
 - en masse 10 : 4 \rightarrow 25% d'hélium en masse
- Résultat dépendant de la quantité relative de photons % nucléons

Prédictions % observations

- He 4Deutérium
- Hélium 3
- Lithium 7

•
$$\rightarrow \Omega_{\text{Baryons}}$$

Le réseau nucléaire : pourquoi s'arrêter au lithium ?

CMB LE FOND COSMOLOGIQUE DE RAYONNEMENT MICRO-ONDES

Équilibre photons 🗇 électrons + ions 🗇 atomes neutres

- Pour un photon, une particule électriquement chargée est une « cible » énorme
- Mais une particule neutre ou un atome neutre est une cible minuscule

- À une température > 10⁵ K, tous les atomes sont ionisés → les photons sont absorbés sitôt émis et ne se propagent pas
- À une température < 3 000 K, le nombre d'atomes ionisés devient négligeable → les photons ne sont plus absorbés et se propagent pratiquement sans aucune interaction

 Fonction de visibilité = probabilité qu'un photon donné ait été diffusé pour la dernière fois au temps (conforme) τ

 Tous les photons reçus du CMB viennent d'un intervalle très étroit en distance, d'une mince coquille, la surface de dernière diffusion ⇒ « instantané » de l'univers

Équilibre thermique \rightarrow spectre de Planck d'un corps noir

Origines des fluctuations

- Dans un univers homogène et isotrope, un rayonnement de corps noir est partout à la même température T
- Une perturbation de cet univers entraîne trois types de décalage de cette température (qui se superposent)
 - un changement intrinsèque de température (compression → réchauffement), dû par exemple à des fluctuations de densité
 - un décalage Doppler si la source se déplace % observateur (perturbation de densité → perturbation de vitesse)
 - un décalage gravitationnel si la source n'est pas au même potentiel que l'observateur (effet Sachs-Wolfe) ou si la lumière traverse des potentiels variables au cours du temps (effet Sachs-Wolfe intégré)
- A quoi s' ajoutent s' ajoutent les avant-plans

La surface de dernière diffusion

Fluctuations de température

La répartition des points chauds et froids est figée à la recombinaison

Les photons se déplacent ensuite librement

L'observateur (au centre) reçoit des photons venant de plus en plus loin

La répartition *spatiale* des pics et des creux induit une répartition *angulaire* de fluctuations de température sur la surface de dernière diffusion

Des fluctuations angulaires au spectre

• Des anisotropies de température

on extrait le « spectre de puissance »

Extremum de vitesse

Extremum de densité Premier pic acoustique

Extremum de vitesse Premier creux acoustique

Extremum de densité Deuxième pic acoustique

Spectre de puissance (avant WMAP)

Spectre de puissance (WMAP)

Changer la courbure *spatiale* ou l'énergie noire Λ

Changer la quantité de baryons ou de matière (noire)

Matière noire... énergie noire...

- La position du premier pic acoustique du CMB indique une courbure spatiale Ω_k presque nulle

→ $Ω_{\Lambda}$ + $Ω_{mat}$ ~ 1

 L'accélération de l'expansion, indiquée par les supernovae, donne une autre combinaison

$$\frac{1}{2} \Omega_{mat} - \Omega_{\Lambda} \sim -0.6$$

■ D'où $\Omega_{mat} \sim 0.27$ → matière noire et $\Omega_{\Lambda} \sim 0.73$ → énergie noire

